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§1 Input Generation

We used 3 different approaches to generate our inputs. Each aimed at hindering a certain
type of algorithm:

e Small: This input was created to stump teams who thought minimizing the number
of rooms would yield optimal output, as the 4-room optimum was 156.536 while
the true optimum of 192.007 occurred at 5 rooms. O-stress and 0-happiness edges
were also added to cause divide-by-zero errors. This input was manually generated.

e Medium: This input was designed to counter approaches that greedily looked at
edges based on % ratio. We inserted edges that had better % but
would cause certain rooms to become too stressful. This input was generated by a

script we wrote.

e Large: This input was intended to foil approaches that greedily looked at edges
based on only happiness or only stress. We inserted high-happiness edges ("rocks”)
and low-stress edges (”pebbles”). Algorithms that greedily added rocks or pebbles
initially would get cornered as these edges later displaced certain rooms in the
optimum configuration. This input was also generated by our script.

Looking back, many teams were able to achieve our solutions. Perhaps we thought too
narrowly about which types of solvers we were trying to defeat. Had we been given more
time, we would have tuned the parameters of our input generator to make our intended
outputs harder to find.
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§2 Algorithm

We utilized a 2-stage 4-pronged strategy, looping through every possible number of rooms
k (our approaches required fixed k).

Algorithm 2.1 — For k =1 to n:

Stage 1: Heuristic

Randomly select and assign k students to the k rooms; this
initial randomness ensures any combination of students could
possibly be together. Then, the 4 prongs were run for
I(k) =41(k) +i2(k) +is(k) + ia(k) iterations (each prong run for i,
i2, i3, t4 iterations respectively).

® Approach 1: Greedily add each remaining student into the room that

9e—g happiness .
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stress

— We felt this was the most "intuitive" greedy strategy.
® Approach 2: Greedily add each remaining student into the room that
minimizes stress.
— This aims at finding a valid configuration for k on which we could
anneal towards an optimum, rather than going for maximum happiness.
e Approach 3: For each room, while possible continuously assign to that
room the remaining unassigned student that would add the least stress.
— We found this approach better at diversifying "groups" of students,
leading to a wider range of configurations.
® Approach 4: Randomly assign all remaining students.

— We hoped this approach could cover certain configurations the other
approaches neglected.

Stage 1.5

For invalid configurations, we applied a stress reduction procedure that attempted
to get all rooms under the stress threshold (a necessary invariant for Stage 2).

Stage 2: Annealing
Independently for each prong in Stage 1, modified simulated
annealing was used to improve results towards local maxima.

® "Neighboring" configurations were valid assignments resulting from moving
any one student OR swapping any pair or triplet of students.

® Rather than randomly picking one neighbor at each step, we considered
multiple possible neighbors.

Over I(k) iterations (i; of approach 1, iy of approach 2, i3 of approach 3, iy of
approach 4) at k rooms, we saved the best configuration after Stage 2.

Our final output submission for each input was the best configuration over all k.
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Remark (Runtime Optimizations). Approaches 1 and 4 typically took more iterations to
find a valid configuration to anneal on, so we tuned the ratios iy : is : i3 : 74 accordingly.
Furthermore, we set (k) using an “adaptive optimization” strategy: if the best configuration
found at k rooms was the best overall so far, our strategy re-ran at k& rooms for many
more iterations. Otherwise, we monotonically decreased I(k) due to the general negative
correlation we observed between total happiness and number of rooms, as well as runtime
considerations (with more rooms our approaches took longer, affording less iterations).

§3 Other Approaches

Most approaches we tried were integrated into our final strategy to widen our coverage.
One approach we tried but eventually discarded (due to consistently subpar performance
in trials) was a “Kruskal-like” algorithm greedily adding edges (pairs of students) into

. happi
rooms based on happiness or %

§4 Computational Resources

e We ran small inputs on a local machine, which finished in ~ 30 minutes.

e We ran medium inputs on local machines; running took ~ 64 hours in total over 4
machines.

e We ran large inputs on AWS EC2 instances; each of our 4 team members used an
AWS account, and running took ~ 1900 free hours in total over 4 accounts.

e We did not use non-standard libraries.

§5 Potential Improvements

We should have debugged much more; many days were wasted on bugs such as floating-
point roundoff, division-by-zero, infinite loops, typoes, etc. We also could have run more
trials to cut out redundant approaches and commit more time to the best 1 — 2 prongs
of our strategy.

With more time, we would have explored guided random approaches (e.g. genetic
algorithm).
86 Closing Remarks

Our team really enjoyed this project, and our competitive spirit drove us to constantly
refine our strategies. We thought this project was a great avenue to apply and implement
ideas from the course (such as greedy algorithms and N P-completeness).

Credits: The BTEX .sty for this file is based on that by Evan Chen (web.evanchen.cc).
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