
The Berlekamp-Welch Algorithm: A Guide

Gilbert Feng

Fall 2020

§1 The Berlekamp-Welch Algorithm

Problem 1.1 (Problem Statement). Alice wants to send Bob a message of length n
characters. However, an adversary, Eve, is allowed to corrupt any of up to k of the
packets (we will use ”characters” and ”packets” interchangeably).

Proposition 1.2

By transmitting n + 2k packets, Alice will be able to guard against up to k general
errors (corruptions) and Bob can recover Alice’s message.

Remark 1.3. There are many things at play here, so let us bookkeep them here:

• q - A prime number greater than the alphabet size, for which we will be working in
GF (q), e.g. every character is taken mod q.

• n - The length, in characters, of Alice’s intended message.

• k - The number of packets of the message that Eve is allowed to corrupt.

• The messages at each step:

– m1,m2, ...,mn - Alice’s original intended message.

∗ Since there are n message points here: (1,m1), (2,m2), ..., (n,mn), Alice can
use Lagrange interpolation to construct an n− 1 degree polynomial P(x)
going through these n points, e.g. P(1) = m1, P(2) = m2, ..., P(n) = mn.

– c1, c2, ..., cn+2k - Alice’s sent message.

∗ Note that m1 = c1,m2 = c2, ...,mn = cn. Then, using her constructed
polynomial P(x), Alice sends 2k extra packets: P(n+1) = cn+1,P(n+2) =
cn+2, ...,P(n + 2k) = cn+2k, to guard against up to k corruptions.

– r1, r2, ..., rn+2k - Bob’s received message (after Eve’s k general error corruptions).

• e1, e2, ..., ek - The k locations where Eve creates general errors, resulting in error
points (e1, re1), (e2, re2), ..., (ek, rek). Bob does not know where these error points are.

– Note that we said Eve could corrupt up to k packets. However, when Eve chooses
to corrupt less than k packets, we can still run the algorithm treating k packets
as corrupted, with some of the corruptions being trivial, e.g. (ei, rei) = (ei, cei).

Now, having received the n + 2k message data points (1, r1), (2, r2), ..., (n + 2k, rn+2k),
Bob’s task is to find Alice’s degree n− 1 polynomial P(x), which goes through at least
n + k uncorrupted points out of these n + 2k received points (i, ri).
Bob can accomplish this with the algorithm of Berlekamp and Welch:

1



Gilbert Feng (Fall 2020) The Berlekamp-Welch Algorithm: A Guide

Algorithm 1.4 (Berlekamp-Welch Algorithm) — Firstly, from the configuration
outlined above, we know that P(i) = ri for at least n + k points.
Let us define the degree-k ”error locator polynomial”:

E(x) = (x− e1)(x− e2)...(x− ek)

Remember, Bob does not know any of e1, e2, ..., ek (yet). Nevertheless, observe that

P(i)E(i) = riE(i), 1 ≤ i ≤ n + 2k

To see why this equality is true, we can split this situation into cases.

Case 1.5. i is not at an error point. Then P(i) = ri, so the equality holds.

Case 1.6. i is at an error point. Then i ∈ {e1, e2, ..., ek}, so E(i) = 0 and the
equality holds.

With this crucial equality in hand, we can proceed towards the heart of the algorithm.
Define

Q(x) = P(x)E(x)

Now, we can set up the final step of the algorithm by noting the following facts:

Fact 1.7. P(x) is degree n− 1.

Fact 1.8. E(x) is degree k, and always has leading coefficient 1.

• So, we can write E(x) = xk + bk−1x
k−1 + ... + b1x + b0.

Fact 1.9. Q(x) is degree n + k − 1.

• So, we can write Q(x) = an+k−1x
n+k−1 + an+k−2x

n+k−2 + ... + a1x + a0.

There are thus n + 2k unknown coefficients (colored gold in Facts 1.8 and 1.9).
So, Alice’s n + 2k sent data points gives us just enough information to uniquely
determine each of these coefficients! All we need to do now is set up a system of
n + 2k linear equations of the format

Q(i) = riE(i), 1 ≤ i ≤ n + 2k

This will look like:

an+k−1 + an+k−2 + ... + a1 + a0 = r1(1 + bk−1 + ... + b1 + b0) (mod q)

an+k−1·2n+k−1+an+k−2·2n+k−2+...+2a1+a0 = r2(2
k+bk−1·2k−1+...+2b1+b0) (mod q)

· · ·

an+k−1 · (n + 2k)n+k−1 + an+k−2 · (n + 2k)n+k−2 + ... + a1 · (n + 2k) + a0

= rn+2k((n + 2k)k + bk−1 · (n + 2k)k−1 + ... + b1 · (n + 2k) + b0) (mod q)

These n + 2k equations can be solved by Gaussian Elimination, giving us the
coefficients a0, a1, ..., an+k−1 and b0, b1, ..., bk−1; this allows us to uniquely determine

E(x) and Q(x) (by Facts 1.8 and 1.9). Now, the ratio Q(x)
E(x) yields our desired P(x).

Bob then computes P(1) = m1, P(2) = m2, ..., P(n) = mn to recover the message.

2


	The Berlekamp-Welch Algorithm

