The Berlekamp-Welch Algorithm: A Guide

GILBERT FENG

Fall 2020

§1 The Berlekamp-Welch Algorithm

Problem 1.1 (Problem Statement). Alice wants to send Bob a message of length n
characters. However, an adversary, Eve, is allowed to corrupt any of up to k of the
packets (we will use ”characters” and ”packets” interchangeably).

Proposition 1.2

By transmitting n + 2k packets, Alice will be able to guard against up to k& general

errors (corruptions) and Bob can recover Alice’s message.
-

Remark 1.3. There are many things at play here, so let us bookkeep them here:

e ¢ - A prime number greater than the alphabet size, for which we will be working in
GF(q), e.g. every character is taken mod q.

e 1 - The length, in characters, of Alice’s intended message.
e /- The number of packets of the message that Eve is allowed to corrupt.

e The messages at each step:

= - Alice’s original intended message.

* Since there are n message points here: (1,71),(2,75), ..., (n,172,,), Alice can
use Lagrange interpolation to construct an n — 1 degree polynomial P(x)
going through these n points, e.g. P(1) =1, P(2) =1, ..., P(n) =
— C1,C9, ..., Cpaiop - Alice’s sent message.
* Note that = cq, = C9, ..y = ¢,. Then, using her constructed
polynomial P(x), Alice sends 2/: extra packets: P(n+1) = ¢,,11, P(n+2) =
Crioy ey P4+ 21) = ¢, 10k, to guard against up to /- corruptions.

— 71,72, ..., "'ni2k - Bob’s received message (after Eve’s / general error corruptions).

® cy,¢,....e, - The /o locations where Eve creates general errors, resulting in error
points (e1,7¢,), (€2, Tey); -y (Eky Te,). Bob does not know where these error points are.

— Note that we said Eve could corrupt up to /- packets. However, when Eve chooses
to corrupt less than /- packets, we can still run the algorithm treating /- packets
as corrupted, with some of the corruptions being trivial, e.g. (e;,7e,) = (€, e,)-

Now, having received the n + 2/ message data points (1,71),(2,72), ..., (n + 2/, Tpi0k),
Bob’s task is to find Alice’s degree n — 1 polynomial P(x), which goes through at least
n + /- uncorrupted points out of these n + 2/ received points (i, 7;).

Bob can accomplish this with the algorithm of Berlekamp and Welch:

Gilbert Feng (Fall 2020) The Berlekamp-Welch Algorithm: A Guide

Algorithm 1.4 (Berlekamp-Welch Algorithm) — Firstly, from the configuration
outlined above, we know that P (i) = r; for at least n + / points.
Let us define the degree-/: "error locator polynomial”:

E(x) = (z—e1)(z —e2)...(x — ex)

Remember, Bob does not know any of e1, ea, ..., ¢, (yet). Nevertheless, observe that
PGHE®G) =rE(@), 1<i<n+2

To see why this equality is true, we can split this situation into cases.

Case 1.5. i is not at an error point. Then P (i) = 7, so the equality holds.

Case 1.6. i is at an error point. Then i € {ej,es,...,ex}, so E(i) = 0 and the
equality holds.

With this crucial equality in hand, we can proceed towards the heart of the algorithm.
Define

Q(x) = P(x)E(x)
Now, we can set up the final step of the algorithm by noting the following facts:

Fact 1.7. P(x) is degree n — 1.
Fact 1.8. E(x) is degree /-, and always has leading coefficient 1.
e So, we can write E(x) =z + zFl L+ bz +
Fact 1.9. Q(x) is degree n + /: — 1.
e So, we can write Q(x) = il 4 "2t agx +

There are thus n + 2/: unknown coefficients (colored in Facts 1.8 and 1.9).
So, Alice’s n + 2/ sent data points gives us just enough information to uniquely
determine each of these coefficients! All we need to do now is set up a system of
n -+ 2/ linear equations of the format

Q@) =rE®@{), 1<i<n+2

This will look like:

+ +..+a+a=ri(1+ + ...+ 01 +by) (mod q)
gntk=1 2MHR=2 1 4 9a14ag = ro(2F by 1214 42b1+-bp) (mod g)
(n 4 28K)M L 4 (42K 2 4 a4 2k) +
= rpyor((n +2k)" + (42" 4 b - (n4+2k)+by) (mod q)
These n + 2/ equations can be solved by Gaussian Elimination, giving us the
coefficients and ; this allows us to uniquely determine
E(x) and Q(x) (by Facts 1.8 and 1.9). Now, the ratio (1*%83 yields our desired P (x).
Bob then computes P(1) = 11, P(2) = 110, ..., P(n) = to recover the message.

	The Berlekamp-Welch Algorithm

