The Berlekamp-Welch Algorithm: A Guide

GILBERT FENG

Fall 2020

§1 The Berlekamp-Welch Algorithm

Problem 1.1 (Problem Statement). Alice wants to send Bob a message of length n characters. However, an adversary, Eve, is allowed to corrupt any of up to k of the packets (we will use "characters" and "packets" interchangeably).

Proposition 1.2

By transmitting n + 2k packets, Alice will be able to guard against up to k general errors (corruptions) and Bob can recover Alice's message.

Remark 1.3. There are many things at play here, so let us bookkeep them here:

- q A prime number greater than the alphabet size, for which we will be working in GF(q), e.g. every character is taken mod q.
- *n* The length, in characters, of Alice's intended message.
- k The number of packets of the message that Eve is allowed to corrupt.
- The messages at each step:
 - $-m_1, m_2, ..., m_n$ Alice's original intended message.
 - * Since there are *n* message points here: $(1, m_1), (2, m_2), ..., (n, m_n)$, Alice can use Lagrange interpolation to construct an n 1 degree polynomial $\mathbf{P}(\mathbf{x})$ going through these *n* points, e.g. $\mathbf{P}(1) = m_1, \mathbf{P}(2) = m_2, ..., \mathbf{P}(n) = m_n$.
 - $-c_1, c_2, ..., c_{n+2k}$ Alice's sent message.
 - * Note that $m_1 = c_1, m_2 = c_2, ..., m_n = c_n$. Then, using her constructed polynomial $\mathbf{P}(\mathbf{x})$, Alice sends 2k extra packets: $\mathbf{P}(n+1) = c_{n+1}, \mathbf{P}(n+2) = c_{n+2}, ..., \mathbf{P}(n+2k) = c_{n+2k}$, to guard against up to k corruptions.
 - $-r_1, r_2, ..., r_{n+2k}$ Bob's received message (after Eve's k general error corruptions).
- e₁, e₂, ..., e_k The k locations where Eve creates general errors, resulting in error points (e₁, r_{e1}), (e₂, r_{e2}), ..., (e_k, r_{ek}). Bob does not know where these error points are.
 Note that we said Eve could corrupt up to k packets. However, when Eve chooses to corrupt less than k packets, we can still run the algorithm treating k packets as corrupted, with some of the corruptions being trivial, e.g. (e_i, r_{ei}) = (e_i, c_{ei}).

Now, having received the n + 2k message data points $(1, r_1), (2, r_2), ..., (n + 2k, r_{n+2k})$, Bob's task is to find Alice's degree n - 1 polynomial $\mathbf{P}(\mathbf{x})$, which goes through at least n + k uncorrupted points out of these n + 2k received points (i, r_i) .

Bob can accomplish this with the algorithm of Berlekamp and Welch:

Algorithm 1.4 (Berlekamp-Welch Algorithm) — Firstly, from the configuration outlined above, we know that $\mathbf{P}(i) = r_i$ for at least n + k points. Let us define the degree-k "error locator polynomial":

$$\mathbf{E}(\mathbf{x}) = (x - e_1)(x - e_2)...(x - e_k)$$

Remember, Bob does not know any of e_1, e_2, \dots, e_k (yet). Nevertheless, observe that

 $\mathbf{P}(i)\mathbf{E}(i) = r_i\mathbf{E}(i), \ 1 \le i \le n+2k$

To see why this equality is true, we can split this situation into cases.

Case 1.5. *i* is not at an error point. Then $\mathbf{P}(i) = r_i$, so the equality holds.

Case 1.6. *i* is at an error point. Then $i \in \{e_1, e_2, ..., e_k\}$, so $\mathbf{E}(i) = 0$ and the equality holds.

With this crucial equality in hand, we can proceed towards the heart of the algorithm. Define

$$\mathbf{Q}(\mathbf{x}) = \mathbf{P}(\mathbf{x})\mathbf{E}(\mathbf{x})$$

Now, we can set up the final step of the algorithm by noting the following facts:

Fact 1.7. $P(\mathbf{x})$ is degree n-1.

Fact 1.8. $\mathbf{E}(\mathbf{x})$ is degree k, and always has leading coefficient 1.

• So, we can write $\mathbf{E}(\mathbf{x}) = x^k + b_{k-1}x^{k-1} + \dots + b_1x + b_0$.

Fact 1.9. Q(x) is degree n + k - 1.

• So, we can write $\mathbf{Q}(\mathbf{x}) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \dots + a_1x + a_0$.

There are thus n + 2k unknown coefficients (colored gold in Facts 1.8 and 1.9). So, Alice's n + 2k sent data points gives us just enough information to uniquely determine each of these coefficients! All we need to do now is set up a system of n + 2k linear equations of the format

$$\mathbf{Q}(i) = r_i \mathbf{E}(i), \ 1 \le i \le n + 2k$$

This will look like:

$$a_{n+k-1} + a_{n+k-2} + \dots + a_1 + a_0 = r_1(1 + b_{k-1} + \dots + b_1 + b_0) \pmod{q}$$

 $a_{n+k-1} \cdot 2^{n+k-1} + a_{n+k-2} \cdot 2^{n+k-2} + \dots + 2a_1 + a_0 = r_2(2^k + b_{k-1} \cdot 2^{k-1} + \dots + 2b_1 + b_0) \pmod{q}$

$$a_{n+k-1} \cdot (n+2k)^{n+k-1} + a_{n+k-2} \cdot (n+2k)^{n+k-2} + \dots + a_1 \cdot (n+2k) + a_0$$

= $r_{n+2k}((n+2k)^k + b_{k-1} \cdot (n+2k)^{k-1} + \dots + b_1 \cdot (n+2k) + b_0) \pmod{q}$

These n + 2k equations can be solved by Gaussian Elimination, giving us the coefficients $a_0, a_1, ..., a_{n+k-1}$ and $b_0, b_1, ..., b_{k-1}$; this allows us to uniquely determine $\mathbf{E}(\mathbf{x})$ and $\mathbf{Q}(\mathbf{x})$ (by Facts 1.8 and 1.9). Now, the ratio $\frac{\mathbf{Q}(\mathbf{x})}{\mathbf{E}(\mathbf{x})}$ yields our desired $\mathbf{P}(\mathbf{x})$.

Bob then computes $\mathbf{P}(1) = m_1$, $\mathbf{P}(2) = m_2$, ..., $\mathbf{P}(n) = m_n$ to recover the message.